Similarity analysis of MHD flow field and heat transfer of a second grade convection flow over an unsteady stretching sheet

نویسندگان

  • Rehan Ali Shah
  • Sajid Rehman
  • M Idrees
  • M Ullah
  • Tariq Abbas
چکیده

Unsteady magnetohydrodynamic (MHD) flow of a second grade fluid over a stretching sheet is a focus of this steady. Surface tension is considered to be varies linearly with temperature. The stretching velocity is defined in (Liu and Andersson in Int. J. Therm. Sci. 47(6):766-772, 2008). Similarity transformation reported by Abbas et al. (Math. Comput. Model. 48:518-526, 2008) are used to develop nonlinear system of differential equations coupled in velocity and temperature fields. The system is solved by the homotopy-analysis method (HAM), while the effects of different parameters such as the unsteadiness parameter S, film thickness, Hartmann numberMa, Prandtl number Pr, Thermocapillary numberM, heat flux –θ ′(0), surface skin-friction coefficient f ′′(0), free surface temperature θ (1) for flow field, and heat transfer are studied in this article.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Possessions of viscous dissipation on radiative MHD heat and mass transfer flow of a micropolar fluid over a porous stretching sheet with chemical reaction

This article presents the heat and mass transfer characteristics of unsteady MHD flow of a viscous, incompressible and electrically conducting micropolar fluid in the presence of viscous dissipation and radiation over a porous stretching sheet with chemical reaction. The governing partial differential equations (PDEs) are reduced to ordinary differential equations (ODEs) by applying suitable si...

متن کامل

The Influence of Thermal Radiation on ‎Mixed Convection MHD Flow of a Casson ‎Nanofluid over an Exponentially Stretching ‎Sheet

   The present article describes the effects of thermal radiation and heat source/sink parameters on the mixed convective magnetohydrodynamic flow of a Casson nanofluid with zero normal flux of nanoparticles over an exponentially stretching sheet along with convective boundary condition. The governing nonlinear system of partial differential equations along with boundary conditions...

متن کامل

MHD boundary layer flow and heat transfer of Newtonian nanofluids over a stretching sheet with variable velocity and temperature distribution

Laminar boundary layer flow and heat transfer of Newtonian nanofluid over a stretching sheet with the sheet velocity distribution of the form (Uw=CXβ) and the wall temperature distribution of the form (Tw= T∞+ axr) for the steady magnetohydrodynamic(MHD) is studied numerically. The governing momentum and energy equations are transformed to the local non-similarity equations using the appropriat...

متن کامل

MHD Boundary Layer Flow and Heat Transfer of Newtonian Nanofluids over a Stretching Sheet with Variable Velocity and Temperature Distribution

Laminar boundary layer flow and heat transfer of Newtonian nanofluid over a stretching sheet with the sheet velocity distribution of the form (UW=cXβ) and the wall temperature distribution of the form (TW=T∞+aXr ) for the steady magnetohydrodynamic (MHD) is studied numerically. The governing momentum and energy equations are transformed to the local non-similarity equations using the appropriat...

متن کامل

MHD Three-Dimensional Stagnation-Point Flow and Heat Transfer of a Nanofluid over a Stretching Sheet

In this study, the three-dimensional magnetohydrodynamic (MHD) boundary layer of stagnation-point flow in a nanofluid was investigated. The Navier–Stokes equations were reduced to a set of nonlinear ordinary differential equations using a similarity transform. The similarity equations were solved for three types of nanoparticles: copper, alumina and titania with water as the base fluid, to inve...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017